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Abstract
When coupling reservoir simulators to surface network solvers, an often used strategy is to perform a rule
or priority-driven allocation based on individual well and group constraints, augmented by back-pressure
constraints computed periodically by the network solver. The allocation algorithm uses an iteration that
applies well-established heuristics in a sequential manner until all constraints are met. The rationale for this
approach is simply to maximize performance and simulation throughput; one of its drawbacks is that the
computed allocation may not be feasible with respect to the overall network balance, especially in cases
where not all wells can be choked individually. In the work presented here, the authors integrate the well
allocation process into the network flow solver, in the form of an optimization engine, to ensure that the
solution conforms to the network rate and pressure balance equations. Results for three stand-alone test
cases are discussed.

Introduction
Field development plans and mid/long term reservoir management decisions, especially for conventional
fields, are usually evaluated using numerical reservoir simulation. The models may include coupling to
surface production or injection networks, in order to simulate a coherent physical object up to a well-defined
boundary, which could for example be a field separator with known pressure or an injection module with
known capacity.

The integration between subsurface and surface simulations can be implemented in a fully implicit
manner, see for example the proposed formulations by Coats et al. (2004) and Cao et al. (2015), which in
principle guarantees stability and yields smooth production and injection profiles. The implicit treatment
however requires a monolithic approach for the solution of the combined network and reservoir equations,
bearing a cost.

An alternative is for the network model to balance surface flow streams, determining well rates based on
inflow performance relationhips (IPRs) computed by the reservoir simulator's well model. The foundation
of such approach is the observation that surface and subsurface flow timescales are very different, i.e., the
network can be balanced considering essentially frozen conditions in the near wellbore regions. The idea,
which traces back to Hepguler et al. (1997), Ghorayeb et al. (2003) and Kosmala et al. (2003), provides the
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possibility to couple different software components, a flexibility which has been deeply exploited (Ghorayeb
et al. 2005; Rotondi et al. 2008). In the network-IPR coupling logic, the coupling location can be chosen
to be either down hole or at the wellhead. The reservoir and network models can be coupled periodically
(e.g., monthly), at every time-step, or at every Newton iteration. The tighter the coupling, the higher the
computational effort, eventually limiting the size and complexity of networks being solved.

A first approach to well control is to implement the allocation strategy into the reservoir simulator's code,
using a field scheduler, field manager, or field controller depending on naming preferences. Typically, the
controller asks the network solver to evaluate the unconstrained network solution based on IPRs computed
by the reservoir well model; the unconstrained well pressures and rates obtained from the network solution
are then used to provide bounds/potential values to the allocation process which can be rule-based, priority-
based, or even optimization-based (Guyaguler et al. 2008). While this may lead to sub-optimal solutions, it
is nevertheless very efficient and useful for reservoir engineers (Ghorayeb et al. 2005).

It is important to note that the above approach applies to both IPR-based and fully implicit coupling,
although the lack of common software makes comparison and benchmark between fully implicit coupling
and IPR-based coupling a challenge (see for example Patacchini et al. (2016) and Su et al. (2016) for
descriptions of fully implicit and IPR-based coupling of the reservoir models and the injection system of the
same field using different commercial solutions, or also Darche et al. (2019)). The approach is schematized
in Fig. 1.

Figure 1—(a) coupling of (multiple) reservoir models to a surface network model used for back-pressure calculations,
where the field scheduler performs the well allocation. (b) coupling of (multiple) reservoir models to a surface network
model where allocation is performed by the network solver itself, following objectives dictated by the field scheduler.

Alternatively, the field scheduler may exploit an optimisation capability of the network flow solver
package (Rotondi et al. 2008; Darche et al. 2019), to whom the allocation task is delegated. A reference
example of this approach is provided by Davidson and Beckner (2003), where sequential quadratic
programming (SQP) is used to maximize an objective function under network constraints.

In this publication, we present the development of a gradient-based optimisation capability inside a
Facility Network Solver (FNS). FNS was developed as a network flow solver to balance pressure and flow
rates in production and injection networks according to well IPRs and a fixed rate or pressure condition
at the separator/terminal node. Flow-line pressure drops are computed using Vertical Lift Performance
(VLP) tables, generated by a third-party tool. FNS is intended to work either as a stand-alone executable,
or integrated with a reservoir simulator in form of a library.

The new gradient-based optimisation feature aims at increasing the benefit of FNS for reservoir engineers
by providing an alternative to simulator built-in heuristics and potential/deliverability based balancing logic
when optimizing hydrocarbon production under constraints.
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The paper is organized as follows. After a simplified description of the network solver formulation, we
provide a simple example illustrating the added value of a network optimizer, and follow with a description
of the adjoint implementation and optimizer algorithm. Finally, we present three standalone (i.e., without
coupling to a reservoir model) examples illustrating FNS capabilities.

Network Solver Formulation

Variables selection
FNS supports both injection and production networks, having either a simple tree structure or possibly
bifurcated flow lines, as illustrated in Fig. 2 for the production case.

Figure 2—Schematic example of two production networks supported by FNS.
Left: the network has a simple tree structure. Right: the network has a bifurcation.

Node-based equations for tree structures will consistently use the indices (i) to refer to the node itself,
(k) to refer to the single downstream node, and j to refer to (each of) the upstream nodes, as illustrated in
Fig. 3. The (W) index will refer to a well node, whose treatment is particular.

Figure 3—Definition of indexes (i), (k) and (j) for node-based equations. Left:
the network has a simple tree structure. Right: the network has a bifurcation.

When the network has a simple tree structure, the variable set reduces to a single pressure per well and
rate controlled separator/terminal node, and to a set of component rates and the pressure at joint nodes.
Flow equations for bifurcated streams are slightly more complicated and require an additional unknown
for the edges (connections) of the graph, at least in situations where multiple out-flowing edges are present
at a node.

The focus of this paper being the network optimizer, we will here succinctly present the basic structure
of the nodes equations for networks with a tree structure. A possible formulation supporting bifurcations
has been presented by Cao et al. (2015).



4 SPE-203954-MS

Well nodes
Well nodes use a single pressure balance equation with the well pressure as primary unknown. Said pressure
can either be the bottom-hole pressure, in which case the first edge past the well node would represent the
well tubing, or the wellhead pressure.

Assuming either a simple choke or a hydraulic correlation for computing the pressure drop across the
outgoing flow line, the pressure equation for the well node (i) is one of

(1a)

(1b)

where the first equation is used in case of the simple choke, and the second equation is used in case of a
hydraulic pressure drop model. Chokes by convention have a negative Δp in direction of the flow and details
of the hydraulics (such as dependence on phase ratios, etc.) are hidden inside the definition of the function H.

Well component rates UW are a function of the pressure unknown pW, and are provided to FNS via IPR
(inflow performance relationship) tables. In case of coupling to a reservoir simulator, these are readily
computed by the well solve.

Hydraulic pressure drop models, often referred to as VFP (vertical flow performance) curves even when
applied to horizontal network pipes, are usually tabulated versus phase flow rates at standard or stock-tank
conditions. The function F(sep) takes a vector of component rates and passes it through a separator or pseudo-
separator to obtain standard or stock-tank rates.

If the computed well pressure lies outside the valid range given by the IPR table, the user-supplied choke
or the well hydraulics is augmented by an additional choke that is computed by FNS. In the example above,
the equation suing well hydraulics changes to

(1c)

whereas equation 1a remains unchanged, but the value of Δp(choke) is being adjusted. As long as the additional
choke is required, that is, the well pressure without the choke lies outside the IPR table range, FNS switches
the primary variable of the well node to the choke Δp.

Joint nodes
Joint nodes feature N component rate balance equations and the same type of constitutive pressure balance
as for well nodes:

(1d)

(1e)

(1f)

where J is the set of upstream nodes. The primary unknowns are the outgoing component rates Ui and the
pressure pi. Separator/terminal nodes with fixed pressure use a dummy equation (so that we do not need to
change the size of the Jacobian in case the type of boundary condition changes), while separator nodes with
fixed rate solve for their pressure. If - for example - a phase rate (e.g., a total liquid rate) is specified, the
balance equation at the separator/terminal node is

(1g)
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where S ∈ {0|1}Nphase depicts the phase combination (Nphase = 3). Component rate boundary equations are
similar, but do not require the separator function F(sep).

The formulae shown above are those for non-bifurcated production streams and are straightforward in
their application. Injection streams are similar in their formulation with the natural flow direction reversed.

Pressure Constraints
FNS allows the insertion of simple network pressure constraints at well and joint node locations. The
constraints limit the allowed pressure range at dedicated node positions and FNS corrects violations by
inserting an additional choke value and switching from the pressure unknown to the choke p(choke). Hence,
the pressure equation for joint nodes resembles that of the well nodes.

The need for a network optimizer: Example for non-local Choke Placement

The problem
The variable substitution mechanism mentioned above works sufficiently well to handle simple pressure
constraints that are either added by the user or imposed by IPR table ranges. Since the substitution is
triggered by a local constraint violation at the node where the choke is going to be placed, the algorithm does
not handle situations where a non-local choke placement is required, and does not consider any optimization.
An example for a non-local choke placement is the following.

Consider the production network shown in Fig. 4 and the corresponding well IPR tables shown in Fig.
6. The usable overlapping operating range for the three wells is a rather narrow band from roughly 75 to
77.8 [Bar].

Figure 4—Production network for Choke Placement Example.
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Figure 5—Production network for Choke Placement Example, after choke placement.

Figure 6—IPR Tables for the three wells of the network illustrated in Fig. 4. Left:
well 1, Middle: well 2, Right:well 3. Pressure is in [Bar], and Rates are in [sm3/D].

The data in Tab. 1 shows the FNS solution for two boundary pressures that are 0.1 [Bar] apart. The output
has been partially truncated to focus on the important points.

Discussion
An increased boundary pressure (here: a shift of 0.1 [Bar]) reduces the rate and consequently also the
pressure drop over the hydraulic flow-line. This leads to an increased pressure at nodes ‘LINE’ and ‘PTF’.
All three wells share the pressure of node ‘PTF’ via zero pressure drop flow-lines, however, the pressure is
out of the range for IPR table 3. The constraint violation triggers the variable substitution mechanism but
unless the user allows the placement of a positive choke that acts like a pump, no solution can be found where
the well pressure matches the platform pressure. Hence, well BTP3 is shut in. The strong reduction of the
field rate then requires chokes to be placed at the remaining two wells that produce the allowed maximum.
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Table 1—FNS output for two boundary pressures 0.1 [Bar] apart, for the network of Fig. 4.

Table 2—FNS output for the optimized solution to the problem of Fig. 4, i.e., as per Fig. 5.

Table 3—Unconstrained Node pressures and rates for test case #1.

A simple solution to avoid the well shut-in is to expand the range of the IPR table for well 3. However, the
maximum pressure was most likely related to an economic well constraint (a minimum rate) and expanding
the range for FNS will probably not help because the well and group control logic will most likely shut in
the well for a violation of the economic constraint.

The solution to the problem is to actually place a choke at one of the first two wells (or both), even if
there is no constraint violation of IPR tables 1 and 2. This will allow to operate well BTP3 at maximum
pressure - producing 50 m3 oil per day, while wells BTP1 and BTP2 produce only slightly less fluids than
before. In order to compute this solution, the IPR table ranges need to be converted to state constraints for
the optimizer so that FNS can compute a solution without the need to shut-in wells.
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Figure 5 shows the non-local choke placements. They are non-local in the sense that the constraint
violation occurred at node BTP3 whereas the chokes are placed at nodes BTP1 and BTP2.

The data in Tab. 2 shows the optimized solution for a boundary pressure of 25 [Bar]. In the rest of the
paper, we explain some details of the optimization process.

Network Optimization

State and Control Variables
Choosing the right state and control variables for the optimizer is crucial. In an industrial environment, the
operator is constrained by what can actually be controlled and/or measured. For instance, if the flow of
several wells is co-mingled into a riser sitting on the sea floor, no individual well control may be possible.
Or, individual valves for wells do exist but have become inoperable over time. Hence, control variables
need to reflect controls that can be physically manipulated.

In our case these are operable chokes and pumps inside the network and gas lift rates where applicable.
State variables are then all primary unknowns of the network solver and derived quantities. The former are
the component rates and node pressures, while the latter are phase ratios and combined flows of well groups.
For using the network flow solver inside the optimization loop, we make the following adjustments:

1. The flow solver is altered to execute in two modes: Normal Mode and Optimization Mode.
2. We use the normal mode to compute an initial solution for the network, including well chokes.
3. The normal mode is slightly altered to allow positive choke values (pumps) to avoid well shut-ins.
4. In optimization mode, IPR tables utilize the full physical range and constraints are handled by the

optimizer.
5. In optimization mode, variable substitution is disabled, and chokes are supplied by the optimizer.

From the viewpoint of the flow solver, these are external variables treated as constants in the regular
flow equations - just like constant pressure drop connections.

6. Derivatives with respect to control variables are computed in optimization mode and placed into a
secondary matrix. This matrix is rectangular by nature and degenerates into a vector in case we only
use a single control variable.

If a well choke was necessary to be placed by FNS for the initial solution, but a choke is actually not
allowed at the present position (because it needs to be moved further downstream or upstream), the optimizer
keeps the choke as control variable. However, an equality constraint will be added to drive the value of the
choke down to zero while increasing choke pressure drop(s) elsewhere.

Some necessary Notation
Only a few pieces of notation are required, which we introduce here.

• y := y(x) is the vector of primary unknowns in the network flow solver and will be referred to as
the vector of state variables. For example, the entries for a joint node in a black-oil model would
be {Ug, Uo, Uw, p}, where ‘g’, ‘o’ and ‘w’ indicate the reference gas, oil and water components
or stock-tank phases.

• For reasons that become clear shortly, the flow equations inside FNS are denoted by c(y(x), x) or
c(y, x)|y= y(x) depending on the context.

• The Jacobian matrix of partial derivatives inside the flow solver will be denoted by cy(y(x), x) or
cy(y, x)|y= y(x) depending on the context. We always consider the Jacobian from the last Newton
iteration at which FNS converged to a solution.

• x is the vector of control variables and presently is restricted to choke values and gas lift rates.
The input deck informs the optimizer where chokes are allowed to be placed and which hydraulic
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pipe segments support variable gas lift rates. The actual number of control variables is determined
inside FNS based on consistency checks and pre-existing chokes.

• cx ∈ ℝny ×nx, where nx is the number of control variables, contains the derivatives of the flow equations
with respect to the local control variables. This matrix is in general not square.

Control Variable Derivatives
Consider the following abstract optimization problem (Heinkenschloss 2008):

(2a)

where y(x) ∈ ℝny is the solution to the state equation:

(2b)

and where

(2c)

Under certain assumptions, the implicit function theorem states the existence of a differentiable function
y : ℝnx → ℝny defined by c(y(x), x) = 0. Its derivative is the solution to the following equation:

(2d)

or short

(2e)

The derivative yx(x) is called the sensitivity of the state variables with respect to the control variables.
The gradient of Ψ̂(x), using the sensitivity, is now given by:

(2f)

(2g)

If we define λ(x) := −cy(y(x), x)−T · ∇y Ψ(y(x), x), the gradient of Ψ̂ can be written as:

(2h)

where λ(x) is the solution to the Adjoint equation:

(2i)

The above tells us that we can compute the gradient of the objective (and of any constraint function)
by reusing the flow solvers Jacobian from the last Newton iteration of the converged network solution.
This is of immense practical value given that a single choke placed randomly inside the network changes
the pressures and rates almost everywhere in the presence of hydraulic flow lines. It allows derivative
computations for the optimizer without the algorithm being aware of the network topology and the details
of the flow equations. Although second order derivatives could be computed in a similar manner, we will
not compute them because of the computational costs involved, and the fact that the flow solver itself does
not have a need for them. We illustrate the process of computing the gradient in Fig. 7.
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Figure 7—Gradient Computation via FNS Adjoint.

A Merit Function for Evaluation and Step Computation
Our optimization strategy is based on the following requirements:

1. It must be fast enough not to slow down the reservoir simulation when used in coupled mode.
2. It must be able to handle infeasible steps, however, the network equations solved by the flow solver

need to be physically feasible.

Given the requirements above, we define a merit function that combines the objective and all state and
control constraints into a single expression:

(3a)

where f(y(x), x) denotes the objective function, and the gi, hi are the inequality and equality state and control
constraints. The facility network flow equations enter the picture as active equality constraint, that is, we
assume the constraint to be satisfied and use the computed derivatives for the adjoint computation. The
design of the objective and the inequality constraints is such that the minimization of the merit function
leads to the desired optimal result. Hence, we are interested in a solution to the minimization problem:

(3b)

(3c)

Since c(y(x), x) = 0 is always fulfilled, the above optimization problem is actually solved as an
unconstrained minimization problem. In order to arrive at a practical algorithm, we solve problem 3b
repeatedly for a sequence of smaller (positive) µ. This allows the optimization procedure to first make
larger strides to reduce the objective, only to tighten the constraints more and more in subsequent iterations.
Hence, we have an outer iteration over µ and an inner iteration to solve the unconstrained minimization
problem for the given µ.

(3d)
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(3e)

Gradient Computation
We now turn our attention to computing the gradient with the help of the adjoint as this was demonstrated
for the abstract problem above. Denote an arbitrary term of equation 3a by the generic function ci(y(x), x),
and - to avoid misunderstandings about which derivatives are partial and which are not - define:

(4a)

(4b)

(4c)

Of course, we do not have the matrix . But if we compute the solution to the adjoint equation

(4d)

the gradient  can be written as:

(4e)

Here, cy(y(x), x) and cx(y(x), x) are the Jacobian and the matrix of control derivatives from the flow solver.
The computation above requires one linear solve to compute the vector of adjoint variables λ. Since our
merit function lumps all derivatives together, we can achieve a major reduction in computational time by
computing the adjoint and gradient for the sum of the penalty terms. For example, let

Then the adjoint equation becomes:

(5a)

and the gradient is computed as:

(5b)

The adjoint and gradient computation for these "lumped" penalty terms effectively reduces the number
of required linear solves to one, because all constraint terms and the objective can be combined this way.

Optimization Algorithm
Presently, we prefer to avoid a Hessian (or the approximation of it) and addressing issues of ill-conditioning
and negative curvature, which need to be considered when developing a robust second order optimization
code. Furthermore, second order methods require additional computational effort for computing the
derivatives. Another issue is that we cannot expect to find a feasible starting point without significant effort.
Our first version of the optimization procedure then uses a simple steepest descent based method based on
the merit function's gradient, combined with a line search. The algorithm is outlined below.
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In algorithm 1, |Sk| denotes the number of active or violated constraints, and the condition in the do-while
loop ensures that a step does not increase the cardinality of the set Sk. However, experiments have shown
that relaxing this condition and actually allowing |Sk+1| > |Sk| sometimes improves the convergence rate. The
factors for decreasing µ and are values that work for most cases but may need adjustment based on case
heuristics. For example, cases that are very sensitive to small pressure changes benefit from a larger factor
(more closer to unity) when decreasing. In our first experiments, we only modify choke values and don't
use gas-lift as additional control variable. Since the range of values for the choke is much more restricted,
the initial step direction can be computed as sk := −∇Ψ̂µ(xk)/||∇Ψ̂µ(xk)|| or a slightly scaled version of it. This
brings the choke adjustment per inner iteration into a reasonable range for an initial value of close to unity.

Testing for Optimality
The choice of a simple steepest descent step deprives us of the mathematical tools to check for necessary and
sufficient optimality conditions. Since Ψµ̂(x) contains the constraint terms, one would need "good" Lagrange
multiplier estimates to at least check for first order optimality. Such estimates can be obtained by combining
µ and the individual ci in certain ways (depending on the kind of constraint), however, this approach strongly
depends on the way the updates to x and µ are computed during inner and outer iterations. In practice, a
simple algorithm like the one shown above will not be able to produce iterates such that either 
or  come even close to a good Lagrange multiplier estimate. Hence, the "test" for optimality in
algorithm 1 above is to simply break the inner loop if the line search fails and continue the outer loop till
µ reaches its minimum.

Regularization
Using any kind of optimization procedure to compute an optimal well allocation at discrete points in time
faces the problem of well oscillations. A trivial example is a hand-crafted script that maintains plateau by
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choking less economic wells, e.g., wells with high water cut. If we have two or more wells with nearly
identical water cut, and if we only need a slight reduction in the total field rate to reach plateau, chances
are that we will switch between wells in subsequent reduction loops. This is simply due to the fact that
reduced wells - who are been given a break so to speak - often see a slight reduction in their water cut. If
coning is present, even in light form, then we can expect that reducing the well's rate will improve the water
cut. Hence, candidates for reduction switch between discrete invocations of the allocation procedure. Using
a numerical optimization scheme does not eliminate the problem. The objective function, f(y(x), x) in our
example, will most certainly contain terms to penalize unwanted production and encourage the production
of oil. As long as no wells are added or shut-in between calls to the optimizer at subsequent time steps,
a simple regularization term that penalizes individual well variations is often sufficient. If the well count
changes, if wells are worked over (that is, the open perforations or perforation parameters are changed
during the simulation run), or if wells are shut-in or re-opened, a more complex penalty strategy is required
that takes the overall effect of the changes into account. By providing a "built-in" optimization capability
in FNS with a reservoir simulator, we hope to avoid well oscillations that sometimes can be observed when
coupling an external network optimization tool with a reservoir simulator.

Numerical Experiments

Test case #1
Our first test case is the simple synthetic production network depicted in Fig. 8.

Figure 8—Production network for test case #1.

The wells have different oil/water ratios, with well W4 producing the most oil per m3 of liquid and wells
W3 and W5 having the largest water cut. Well W5 is the most productive well, supplying roughly half of
the field oil rate in the unconstrained case.

Table 3 lists node pressures and liquid rates for the unconstrained field case, where wells are choked only
by the network back-pressure.

For our optimizer test, we imposed a total liquid constraint of 10, 000 [m3/D] at node J4. Chokes were
allowed at individual wells only, resulting in a total of 4 control variables for the optimizer. Since we need
an objective to "pull" the solution towards a minimum, we associated a negative cost multiplier with the
field oil production and a positive cost factor with the field water production. This is in line with traditional
field reduction methods that need to know which wells are preferred economically.

We first show in Fig. 9 and Fig. 10 two plots illustrating how the field rates and merit function values
evolve during the optimizer's iterations. The observable jumps in Fig. 10 are due to the outer iterations
where we tighten µ.
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Figure 9—Oil and Water production rates (in [sm3/D]) for test case #1.

Figure 10—Evolution of the merit function with optimization step for test case #1.

We then report in Tab. 4 rounded solution values. The result is close to being optimal. The optimal oil
rate for this case is 9, 490sm3/D. The total run time on a high end laptop is approximately 180 [ms].

Test Case #2
Our second test case uses a small section of a deep-water flow network as shown in Fig. 11. Here again, the
objective is to limit the liquid rate. Since the riser is very sensitive to the water cut in the transported fluid,
we need the optimizer to reach the reduction goal by mostly reducing wells with high water rates.

Table 4—Node pressures and rates for optimized result - test case #1.
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Figure 11—Production network for test case #2.

Table 5 shows the pressures and rates for the unconstrained case. The wells on the left side (PLAT A)
of the diagram share the same IPR tables, and so do the wells on the right side (PLAT B). Our expectation
is that only the wells on the left side will be chocked in order to meet the constraint of 150, 000[stdb/D]
total liquid rate.

Table 5—Unconstrained Node pressures and rates for test case #2.

We first show in Fig. 12 and Fig. 13 two plots illustrating how the field rates and merit function values
evolve during the optimizer's iterations. The observable jumps in Fig. 13 are due to the outer iterations
where we tighten µ.
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Figure 12—Oil and Water production rates (in [stb/D]) for test case #2.

Figure 13—Evolution of the merit function with optimization step for test case #2.

We then report in Tab. 6 rounded optimization solutions. The fact that the rates drops in a linear fashion
during the iterations (see Fig. 12) show that there is room for improvement, e.g. pursuing a more aggressive
step computation.

Test Case #3
We consider the gathering network of a gas field as depicted in Fig. 14. The network uses flow-line
bifurcation in two places to widen the flow path for the transport of gas from the manifolds to the gathering
point at which we apply a boundary condition of ≈ 26 [Bar]. The well IPR tables are actually very narrow
for this case, however, we selected a boundary pressure that doesn't require the application of chokes for
the unconstrained case.
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Table 6—Node pressures and rates for optimized Result - test case #2.

Figure 14—Gas gathering network of test case #3.

We apply a gas rate limit of 50 Million [m3/D] and penalize high water content as before. The ratio
between unconstrained and optimized rates for the different wells is illustrated in Fig. 15, where wells
are ordered by increasing water-gas ratio (from top to bottom). Figure 16 shows shows the value of Δp(choke)

proposed by the optimized for each well, vs. the well WGR (water-gas ratio) in the unconstrained scenario.
It appears, as expected, that the trend is towards wells with higher WGR being choked more. The optimal
solution however is scattered around the trendline, which would have been difficult to obtain using simple
rule-based allocations available in reservoir simulators.
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Figure 15—Unconstrained and optimized gas rates for test case #3.

We then show in Fig. 17 and Fig. 18 two plots illustrating how the field rates and merit function values
evolve during the optimizer's iterations. Contrary to the test cases #1 and #2, here there are no observable
jumps in the merit function.

Figure 16—cross-plot of wellhead choke pressure drop vs. WGR for test case #3, after optimization.

Figure 17—Gas and Water production rates for test case #3. Gas rate tends to its target (50 Million [m3/D]).
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Figure 18—Evolution of the merit function with optimization step for test case #3.

Conclusions and Future Work
A simple first-order gradient-based optimization algorithm has been implemented in a facility network
solver, designed to run either standalone, or be coupled to a reservoir simulator. The main advantage of this
approach is the integration with the flow solver which simplifies the engineering workflow and allows an
efficient way to compute derivatives using the Adjoint method.

The end-goal of this development is to enable coupled reservoir-network simulations where the well
allocation is directly performed by the network solver by tuning the network configuration or choke/pump
settings in order to achieve a given target under constraints, rather than having the reservoir simulator
allocate rates based on rules or priorities subject to a network back-pressure.

I this paper, we presented the development of the optimization algorithm, tested on three selected
standalone cases where well IPRs are computed by the reservoir simulator in a preprocessing step (i.e.,
represent a snapshot of reservoir conditions). The next step will be to apply the optimizer in coupled runs.
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